Riluzole as a neuroprotective drug for spinal cord injury: from bench to bedside.
نویسندگان
چکیده
Spinal cord injury (SCI) is a devastating event resulting in permanent loss of neurological function. To date, effective therapies for SCI have not been established. With recent progress in neurobiology, however, there is hope that drug administration could improve outcomes after SCI. Riluzole is a benzothiazole anticonvulsant with neuroprotective effects. It has been approved by the U.S. Food and Drug Administration as a safe and well-tolerated treatment for patients with amyotrophic lateral sclerosis. The mechanism of action of riluzole involves the inhibition of pathologic glutamatergic transmission in synapses of neurons via sodium channel blockade. There is convincing evidence that riluzole diminishes neurological tissue destruction and promotes functional recovery in animal SCI models. Based on these results, a phase I/IIa clinical trial with riluzole was conducted for patients with SCI between 2010 and 2011. This trial demonstrated significant improvement in neurological outcomes and showed it to be a safe drug with no serious adverse effects. Currently, an international, multi-center clinical trial (Riluzole in Acute Spinal Cord Injury Study: RISCIS) in phase II/III is in progress with riluzole for patients with SCI (clinicaltrials.gov, registration number NCT01597518). This article reviews the pharmacology and neuroprotective mechanisms of riluzole, and focuses on existing preclinical evidence, and emerging clinical data in the treatment of SCI.
منابع مشابه
Riluzole for the treatment of acute traumatic spinal cord injury: rationale for and design of the NACTN Phase I clinical trial.
In the immediate period after traumatic spinal cord injury (SCI) a variety of secondary injury mechanisms combine to gradually expand the initial lesion size, potentially leading to diminished neurological outcomes at long-term follow-up. Riluzole, a benzothiazole drug, which has neuroprotective properties based on sodium channel blockade and mitigation of glutamatergic toxicity, is currently a...
متن کاملRiluzole for acute traumatic spinal cord injury: a promising neuroprotective treatment strategy.
BACKGROUND Over the years, understanding of the specific secondary injury mechanisms that follow traumatic spinal cord injury (SCI) has improved. These pathologic mechanisms collectively serve to increase the extent of neural tissue injury, reducing prospects for neurologic recovery. An enhanced understanding of the pathobiology of SCI has permitted investigation of therapies targeting specific...
متن کاملStudy of Neuroprotective Effects of Green Tea Antioxidant on Spinal Cord Injury of Rat
Purpose: Recent studies revealed the neuroprotective effects of green tea antioxidant on experimental cerebral ischemia, but these effects on spinal cord injury (SCI) has not yet been studied.Materials and Methods: Rats were randomly divided into three groups of 18 rats each as follows: sham group (laminectomy), control group (SCI) and experimental group (EGCG). Spinal cord samples were taken 2...
متن کاملEvaluation of the sodium-glutamate blocker riluzole in a preclinical model of ervical spinal cord injury
STUDY TYPE Basic research Introduction: Because sodium and glutamate play integrated roles in the pathology of spinal cord injury (SCI), there is intense interest in the potential role of the sodium-glutamate blocker riluzole as a neuroprotective agent for spinal cord injury. A phase I safety clinical trial of riluzole is about to commence in the USA and Canada. OBJECTIVE The key challenge...
متن کاملRiluzole effects on behavioral sensitivity and the development of axonal damage and spinal modifications that occur after painful nerve root compression.
OBJECT Cervical radiculopathy is often attributed to cervical nerve root injury, which induces extensive degeneration and reduced axonal flow in primary afferents. Riluzole inhibits neuro-excitotoxicity in animal models of neural injury. The authors undertook this study to evaluate the antinociceptive and neuroprotective properties of riluzole in a rat model of painful nerve root compression. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecules
دوره 20 5 شماره
صفحات -
تاریخ انتشار 2015